Employing aromatic tuning to modulate output from two-component signaling circuits
نویسندگان
چکیده
Two-component signaling circuits (TCSs) govern the majority of environmental, pathogenic and industrial processes undertaken by bacteria. Therefore, controlling signal output from these circuits in a stimulus-independent manner is of central importance to synthetic microbiologists. Aromatic tuning, or repositioning the aromatic residues commonly found at the cytoplasmic end of the final TM helix has been shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor (EnvZ) of Escherichia coli. Aromatic residues are found in a similar location within other bacterial membrane-spanning receptors, suggesting that aromatic tuning could be harnessed for a wide-range of applications. Here, a brief synopsis of the data underpinning aromatic tuning, the initial successes with the method and the inherent advantages over those previously employed for modulating TCS signal output are presented.
منابع مشابه
Forcing the Issue: Aromatic Tuning Facilitates Stimulus-Independent Modulation of a Two-Component Signaling Circuit
Two-component signaling circuits allow bacteria to detect and respond to external stimuli. Unfortunately, the input stimulus remains unidentified for the majority of these circuits. Therefore, development of a synthetic method for stimulus-independent modulation of these circuits is highly desirable because particular physiological or developmental processes could be controlled for biotechnolog...
متن کاملCompact Lossy Inductance Simulators With Electronic Control
In this paper two R‑L network simulator configurations employing a single VDDIBA, one resistance and one grounded capacitance are presented. The first configuration is a grounded series resistor-inductor (R‑L) network simulator and the second configuration is intended for grounded parallel resister-inductor (R‑L) circuit simulation. Both the proposed circuits enjoy several beneficial features s...
متن کاملOutput-Conductance Transition-Free Method for Improving Radio-Frequency Linearity of SOI MOSFET Circuits
In this article, a novel concept is introduced to improve the radio frequency (RF) linearity of partially-depleted (PD) silicon-on-insulator (SOI) MOSFET circuits. The transition due to the non-zero body resistance (RBody) in output conductance of PD SOI devices leads to linearity degradation. A relation for RBody is defined to eliminate the transition and a method to obtain transition-free c...
متن کاملHigh Q Power Divider/Combiner with High Output Isolation using Substrate Integrated Waveguide Technology
A power divider (PD)/ power combiner (PC) with high quality factor and enhanced output ports isolation using substrate integrated waveguide (SIW) technology is proposed. An SIW cavity is designed to provide a high quality factor filtering response and an SMD resistor is attached between two output ports to realize the high isolation. The value of the applied resistor is calculated by using the ...
متن کاملDynamical Casimir effect in superconducting microwave circuits
We theoretically investigate the dynamical Casimir effect (DCE) in electrical circuits based on superconducting microfabricated waveguides with tunable boundary conditions. We propose implementing a rapid modulation of the boundary conditions by tuning the applied magnetic flux through superconducting quantum-interference devices that are embedded in the waveguide circuits. We consider two circ...
متن کامل